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The Displaced Rectangular Waveguide
Junction and 1ts Use as an Adjustable
Reference Reflection |

JOHN D. HUNTER, SENIOR MEMBER, IEEE

Abstract —The reflection from a displaced junction in rectangular wave-
guide and the equivalent circuit parameters are calculated using modal
analysis. The use of weighted Gegenbauer polynomials to describe the field
in the plane of displacement is shown to significantly improve the rate of
convergence of the solution in comparison to waveguide-type mode func-
tions. Approximate formulas are given for displacements of up to 25
percent of the waveguide dimensions. An E-plane displaced junction is
suggested for use as an adjustable reference reflection.

I. INTRODUCTION

HEN TWO collinear waveguides of identical cross

section are joined, any misalignment will cause a
signal incident on the junction to be partially reflected. In
a waveguide system with many junctions, it is possible for
the reflections caused by several small misalignments to
interfere constructively, and significantly degrade the sys-
tem performance. The effect of small junction displace-
ments in either the E-plane or H-plane of rectangular
waveguide can be estimated by representing the junction as
an iris [1], but this approximation has long been known to
produce large relative errors [2].

The displaced junction is amenable to investigation using
the modal analysis technique, which has been successfully
applied to several other waveguide discontinuity problems
[3]-[7]. In most previous applications, the field in the plane
of discontinuity has been represented by a series of trigo-
nometric functions appropriate to a waveguide with the
same cross section as the aperture. Although these func-
tions each satisfy the boundary conditions in waveguide,
several must be summed in order to approximate the field
behavior at the aperture edges [6]. It has been suggested
that this approximation can be improved by taking into
consideration the normally neglected higher order func-
tions [8]. Recently, the use of weighted Chebyshev poly-
nomial aperture functions, which each behave correctly at
the edge of a half plane, has been shown to improve the
rate of convergence of the matrix solution for a step-
diaphragm junction in parallel-plate waveguide [9].

In this paper, the effect of transverse displacement of a
rectangular waveguide junction is calculated for TE,,-mode
propagation. The modal analysis technique is used, with
the correct behavior of the transverse electric field near the
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aperture edges ensured by using appropriately weighted
Gegenbauer polynomials as the aperture functions. The
rate of convergence of the matrix solutions is compared
with that achieved using trigonometric aperture functions.
Simple empirical formulas developed from the solutions
are more accurate than the usual iris approximations.

An E-plane displaced junction is shown to have a simple
equivalent circuit, making it suitable for use as an adjusta-
ble reference reflection.

II. GENERAL FORMULATION

Two rectangular waveguides with identical cross-sec-
tional areas 4; and A, are joined with axes parallel, but
with a transverse displacement s normal to either the broad
wall (E-plane displacement) or the narrow wall ( H-plane
displacement). A TE,,-mode field incident on the junction
from waveguide 1 has a frequency such that no other
propagating modes can be sustained in the guide.

The transverse electric and magnetic fields in the aper-
ture formed in the junction plane can be written as

Ef=Yhe!,  Hi=Ych] (1)
. n n

with the functions &, and ﬁ;,’ chosen orthogonal over the
aperture area 4, to satisfy :

-

Léﬂx%ﬂ¢g=o, i* . (2)

1
a

The sums of the incident and reflected transverse fields
in the incident waveguide are, at the aperture plane

=

E.=¢é 4+ Zapep

b4

ﬁT=h1,0—Zaphp (3)
r

where a, is the complex coefficient of mode p. In wave-

guide 2, the transverse transmitted fields at the aperture

plane are

Ef=Ya)é, Hi=)ah, (4)
» p
The mode components €,, h , and &, 75;, are orthogonal
over A, and 4,, respectively.
Equating the transverse fields in the aperture plane

enables the vector p with elements b, to be determined
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Fig. 1. Equvalent circuit and flow-graph for a displaced waveguide
junction.

from the matrix equation [6]
Ab=(ST+5'T")b=25a,=Q

i)

(5)

where g, is a vector with the first element unity and all
other elements zero, and the elements of the matrices § and
T are

n,p

S, =Lé;'xﬁp-d1a/L &’ X h"-dA,

(6)

The elements of §’ and T’ are given by (6) after replacing
€y 7zp, and 4, by €, 72;,, and A4,, respectively. The first
coefficient in (3) 1s the reflection coefficient I' of the
propagating mode in waveguide 1, and is the first element
of the vector 70 — g,.

The junction is symmetric and lossless, and its equiva-
lent circuit may be represented as a shunt susceptance B at
the center of a lossless transmission line of real characteris-
tic admittance Y, and length /, as shown in Fig. 1 with the

corresponding flow-graph. Then
— Jj(B/Y,)exp(~ jf)

T, =/Aae” x hp-dAa//AleP Xk, dd;.

I=pe™/= 27 jB/Y, (7)
where 6 =27l /A g With A, the guide wavelength, and
B 2T
Yol [-irp]”
arg(F)=—sgn(—%)[w—cosﬂ([ﬂ)]—ﬁ. (8)

The sign of B/Y,, denoted by sgn(B/Y,),is +1 when B is
capacitive, and —1 when B is inductive.

III. E-PLANE DISPLACEMENT

The displaced junction in Fig. 2 shows waveguide 2 in
the x, y’, z cartesian coordinate system displaced by an
amount y =s with respect to waveguide 1 in the x, y,z
cartesian coordinate system. With a TE,,-mode signal inci-
dent from waveguide 1, the TE,;, and TM, , modes set up
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Fig. 2. Geometry of an E-plane displaced junction.
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by the discontinuity will combine to ensure Ex =0, and
form the LSE, , mode with components

L [TX pmy

€= ysm ( a )COS( b )
. 7 zjweb A 2_ ('n' ) (p y)
xhp 277}’,,[(_20) 1]sm P cos b

where €, , = é,. v, is related to the propagation constant v,
of mode p, which is evanescent for p > 1, by

B b L £2 b 2112 _
Yp—zﬂ,yp—[(2> (}\ ):l s P—1,2,3

p=0,1,2,-

(9)

g

) b
Yo=JBo=Jy" (10)
4

Expressions for €, and % - h » are given by (9) after replacing
ybyy”.
The plane n = 0 bisects the aperture, and it is convenient

to write €/’ and %- h” in the form

e —nsm( P )fn(zj

-t n(2)e(2) o

where d = b —s. The aperture functions f,(§) and g,(§)
must be selected so that (2) is satisfied, but without loss of
generality can be written in the form

(8= (=15, 9).
8.(8)=(-1)"g, (- ¢). (12)
It follows from (5) and (6) that 4 has elements
Ayui1.2m+1 = 0, enabling (5) to be separated into the two
independent matrix equations 4°b°= Q¢ and Ab° = Q°,
with Q¢ the null vector and bf = b,,, b2 =b,,,,=0. The
aperture fields are therefore even about n = 0. The super-

scripts ¢ and o are used throughout to denote variables
associated with even and odd aperture functions, respec-

), n=0,1,2’...

=~

tively.
The remaining matrix equation has elements
Z €,
A:; m= szfn pZO Y— COSZ(K )IZn Plzm p?
n,m=0,1,2---
. 215, 4 (13)
" YoDan
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where
«,=pnd/2b

and

IZn,p = _/(;Ion(é)COS(Kpg) dg

D,,= flfzn(g)gn(g) d¢
0

ep=1, p=0

=2, (14)

Orthogonality ensures that I,, ,=Q;=0,n>0, from
which it can be shown that /=6 =0 and, therefore, the
equivalent circuit of the F-plane displaced junction is a
shunt susceptance in the junction plane.

Ag o 18 the only element of 4° to contain a term in v, and
be complex, and the Appendix then shows that all b7 have
the same argument. This enables the matrix equation to be
separated into real and imaginary parts, and the problem
reduces to solving

p>0.

'~W8X€ = BE

where the real symmetric matrix * and the real vector R¢
have elements

©  cos?(k
W= 5 )
p=0 Ty
e H,,
T8
=0, n>0.
The H,, , are obtained by dividing the I, , by a nonzero,
but otherwise arbitrary, function of n, which will be de-

Hzn’szm,p, n,m=0,1,2,"'

noted by F¢(n).
The shunt susceptance and reflection coefficient are
B ., = jas
T, 2af, r 1T o (17)

where the scalar «° is calculated from

(a9) ' =[R]"X =Ry XS

(18)

A.  Gegenbauer Polynomial Aperture Functions

To take into account the edge condition, the desired
behavior of the transverse aperture field components is [5]

Epoxpr Y3, x-Hpor?/?, (19)

where r in Fig. 2 is the distance from an edge, measured in
the aperture plane. Orthogonal aperture functions, which
each behave correctly near the edges, can be written in
terms of the Gegenbauer polynomials C’(§) as

L&) =0-8)""cs(¢)
g,(£) = (1-8)°C/o(8).

These give rise to integrals for the H,, , which can be
evaluated as an infinite summation of hypergeometric

asr —0

(20)

(15)
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functions, but a simpler result is obtained if the aperture
functions are chosen to be the orthogonal set

(&)= (1-8) 7 co(¢)
g,(£)=C/5(%) (21)

which correctly describes the behavior of ET at the edges,
and approximates the behavior of %-Hy at the edges when
several functions are summed. The integrals for the H,, ,
can be evaluated using [10]

[ @=8)7 8 exp ) d

i _j2al(n+2v)J,,,(x)
 T(n+1)T(»)(2x)"

,  Re(r)>-1,2
(22)

and F¢(n) chosen such that

J2n+1/6("p)
H2n, =TT b p > O
p (K.p)l/6
S Cl il (23)
Y ras)?

where J,(z) is the Bessel function of the first kind, and
T'(z) is the Gamma function.

In order to invert W¢, the aperture functions considered
must be restricted to a finite number N, but in principle it
is not necessary to limit the number of waveguide modes
considered. However, for speed of computation, we use
(23) to consider P waveguide modes exactly, and the
asymptotic expression

2 \1/2 vr T
J,,(z)—>(-w—z) cos(z———z——z),

to obtain a residual R which approximates the contribution
to Wy, from higher waveguide modes. Thus
PoL cos?(k,)

= 1/3J2"+1/6(KP)JZM+1/6(KP)
p=1 Yp(Kp)

z-00 (24)

(4
n,m

+(_1)n+mR

k,—/3)-1/2]"

473
v, (1,)"

R=-2‘1; i [cos(2 (25)

B. Trigonometric Aperture Functions

Aperture functions which have the same form as wave-
guide modes are
(26)

f2n(£) = g2n(€) = COS(’MT&)
and by choosing F(n)=(—1)"
x,sin (1, )

=—, K, Fnw
(k,)* = (nm)’ ’

and H;, =1. As the denominator § in (27) tends to zero

G 8
H2n,p > | (1+2—n;), 6—0,.

(27)

2n,p

(28)
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IV. H-PLANE DISPLACEMENT

The displaced junction in Fig. 3 shows waveguide 2 in
the x’, y, z cartesian coordinate system displaced by an
amount x =s with respect to waveguide 1 in the x, y, z
cartesian coordinate system. With a TE,;-mode signal of
free-space wavelength A incident from waveguide 1, the
TE,, modes set up by the discontinuity will have compo-
nents

é’:

) p=1’2,3,...

<

pwx)
a b

- 172) 7X
h, j(‘u) —ypsm(p—a—) (29)

where €, ;= €|, and v, is related to the propagation con-
stant y, of mode p, which is evanescent for p > 2, by

_a ., _ 32_(2)“/2 _
% =5 [(2) X ,  P=234

v =JB= j[(%)z— Hl/z~

¢, and h;, are given by (29) after replacing

sin (

(30)

Expressions for
x by x’.
The plane n = 0 bisects the aperture, and we write

gi;’=)’>fn(gﬂ)> I’l=0,1,2.~'-

T A 1/2A 277
w=i( 2] 2e () (31)

where the aperture functions are selected so that (2) and
(12) are satisfied.

The analysis for the H-plane displacement case is similar
to that for E-plane displacement, with elements A, .1 5,11
=0, enabling (5) to be separated into two independent
matrix equations which can each be put into the form
discussed in the Appendix. The problem reduces to solving

WX=R, WX =R (32)
where the real, symmetric matrices W*, W° and the real

vectors R, R° have elements

o0

We .= 2. Y,sin’(k,) Hy, ,Hyp s n,m=0,1,2--
p=2
o0
I/I/;zom= Z chosz(Kp)H2n+1,pH2m+1.p’
p=2
n,m=0,1,2---
ezﬁl/ZSin(’fl)Hznl
R; 1/2‘305(“1)]1(2”11 (33)
with
k,=pnd/2a
and

Hap = [ Fn(€)c0s(5,8) d€/F*(n)

Hapesoy = [ fonn(€)sin(x,8) d€/F(n). - (34)
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F?(n) and F°(n) are nonzero, but otherwise arbitrary,
functions of .

The equivalent circuit elements and the reflection coeffi-
cient are

B _2(1+a%’)
Y, a-_o

6=a—2tan" ! (a°)
P=(1-je) '+ (1- ja°) "
where the scalars a® and a° are calculated from
()
(a?)!

1

-1 (35)

= [R]"x°

=[&]"x".

(36)

A. Gegenbauer Polynomial Aperture Functions

To take into account the edge condition, the desired
behavior of the transverse aperture fields is [5]

Epapr??,  Hpxr Y2, asr—0 (37)
where r is shown in Fig. 3. Orthogonal aperture functions
which each behave correctly near the edges are given by
(20), with the expressions for f,(£) and g,(§) interchanged.
Interchanging the expressions for f,(£) and g,(£§) in (21)
enables (22) to be used with an alternate formulation to (5)
in terms of the unknown coefficients {c,}, and ensures
that HT behaves correctly at the edges, and approximates
the behavior of E at the edges when several functions are
summed. However, numerical comparisons showed more

rapid convergence using (5) and (22) with

(8= (1= 8)7c ()
8.(8§)=C/°(¢)
which correctly describes the behavior of E, at the edges,
and approximates the behavior of H, when several func-

tions are summed. Obvious choices of F¢(n) and F°(n)
result in

(38)

_ Jn+7/6('€p)

n.p (Kp)7/6

As before, we consider P waveguide modes exactly, and
use (24) to obtain residuals R* which approximate the

(39)
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contribution from higher waveguide modes. Thus

L ypsind(x,)

Wim= Z 773 Jzn+7/6(" )-]2m+7/6('c )
p=2 ( )
+(-1)"""R*
P y,c08%(x,)
Z )-,/3 J2n+13/6(Kp)J2m+13/6(Kp)
= Kp
+(_1)n+mR_
. _ 2
Riz_l_ i yp[s1n(2icp+'n-/6)+l/2] (40)
29 10/3
p=P+1 (xp)

B. Trigonometric Aperture Functions

Aperture functions having the form of waveguide modes
are

7:(8) = g (&) =sin [ (n+1) (¢ + D F
which lead to

(41)

H, = cos(x,)
R [V P
2n+l,p Sin(K ) (42)

[(n+1)7]*~(x,)*

As the denominators § in (42) tend to zero

(=" 8
B> Gy |V @) 270
(=n° 8
H2"+1”’—)2(n+1)77 2(n+)7 |’ 60
(43)
V. REsuLTS

If N aperture functions are considered in the preceding
matrix formulations, the orders of W¢ and W are I{(N +
1) /2} and I{N/2}, respecuvely, where I{ } signifies

“the integer part of.”

It has been found [6], [11] that, for the trigonometric
aperture function formulations (TF), convergent solutions
are most readily achieved if the number of aperture func-
tions has a value close to N=1 {PA,/A;}, and this
relationship is used in all our TF computations.

The value of N required for convergence is much less
using the Gegenbauer polynomial formulations (GF) than
TF with the same value of P. For example, an E-plane
displacement of 5s/b =0.1 with b/A, = 0.3 has an equiva-
lent circuit normalized shunt susceptance of B/Y,=
0.058041. With P =100, the TF (W* of order 45) gave the
answer correct to five decimal places, but the same conver-
gence was achieved with the GF when W*° was of order 3.

With P =100, values of |I'| from the TF were convergent
to at least five decimal places for 0.05< A4,/4; <0.99.
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Fig. 4. Reflection coefficient magnitude for an E-plane displaced junc-
tion, with b/A , =1 (:025) .45.

Equal or better convergence was found using the GF with
N=12for A,/A4,> 0.9, N=8 for 0.5< 4,/4,<0.9, and
N=4forA,/4,<05.

The effect of neglecting the residual term in the GF
matrix elements was examined, and, irrespective of the
number of aperture functions considered, the accuracy of
the results did not equal that of the TF using the same
value of P. This is attributed to terms in the matrix
elements decreasing as p* for the TF, but only as p’/* for
the GF, making the neglect of higher terms more signifi-
cant.

The GF requires the evaluation of a large number of
Bessel functions, and, although these can be computed
rapidly using backward recurrence, the computation of the
trigonometric functions required for the TF is somewhat
faster. However, once the Bessel functions (or trigonomet-
ric functions) have been evaluated for a given displace-
ment, the smaller matrix size needed with the GF renders
that method increasingly superior as the number of fre-
quencies of interest increases. When the displacement is
large (aperture small), the reduced matrix size required by
the TF reduces the GF superiority.

The computations were verified to within the experimen-
tal accuracy of a six-port reflectometer measurement {12}.
Reflection coefficients were measured in WR284 wave-
guide, for both E-plane and H-plane displacements.

Figs. 4 and 5 show the variation of |I'| and B/Y, with
E-plane displacement for various values of b/A,. At a
fixed frequency, |I'| increases monatonically with displace-
ment, and for a given displacement it increases monotoni-
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Fig 5. Equwvalent circuit normalized shunt susceptance for an E-plane
displaced junction, with b/, = .1 (.025) 45.

TABLEI
PoOLYNOMIAL COEFFICIENTS FOR APPROXIMATION TO |I'] IN (44)

E-Plane Displacement H-Plane Displacement

n u v u v

n n n n
Y 1.833 0.293 1.750 0.635
1 0.276 2.133 -0.332 -1.562
2 0.73 0.78 -2,71 0.44
3 0 19.69 -3.57  -7.83

cally with frequency. For 0.1<b/A, <045, |I'l can be
approximated by
3 3
log,o(IT) = 2 u,(§—a)"logyo(1)+ X 0,(§—a)"
n=10 n=0
(44)

with §=b/A,, a=0.3, 7=15/b, and the coefficients v, v,
given in Table 1. This gives |T'| with an error of less than 14
percent for 0.025 < s/b < 0.25, and with an absolute error
of less than 0.0001 for s/b <0.025. B/Y, and arg(1’) are
calculable from (8), taking sgn(B/Y,)=1 and § = 0.

The effective extra electrical length # introduced by
H-plane displacement of the junction is shown in Fig. 6,
and never exceeds 73 degrees. Fig. 7 shows the variation of
[T’} with H-plane displacement for various values of a/A.
At a fixed frequency, |I'| increases monotonically with
displacement, but it decreases monotonically with frequen-
cy only for large displacements. The expression in (44) can

Fig. 6.

logm(lr‘[)

Fig. 7.

8 (deg)
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be used with the coefficients in Table I and &é=a/A,
a=10.7, 7=s5/a, to approximate |I'| with an error of less
than 4 percent for 0.6 <a/A <0.9, 0.05<s/a < 0.25. For

6<a/A<095, s/a<0.05, the approximation gives |I|
with an absolute error of less than 0.0015, and for 0.9 <
a/\ <0.95 the absolute error is less than 0.008 for s /a <
0.2, and less than 0.015 for s/a<025. B/Y, and arg(T')
are calculable from (8) after taking sgn(B/Y,)= —1, and
using the curves in Fig. 6 to estimate 6.

VI. A DISPLACED JUNCTION AS A REFERENCE
REFLECTION

Reduced-height waveguides are well established as a
means of providing reference reflections in a rectangular
waveguide system. To a first order of accuracy, the reflec-
tion coefficient is simply related to the ratio of waveguide
heights, and is frequency independent. For more accurate
work, the frequency dependence of the reflection can be
estimated using an approximate formula which takes into
account the capacitance associated with the waveguide step
[1]. The effect of the loss associated with the flange junc-
tion should also be considered, as it affects the calculated
value of the reflection coefficient directly [13]. A set of
reduced-height waveguides providing a range of (fixed)
reference reflections can be costly to manufacture.

The displaced waveguide junction is an alternative means
of providing a reference reflection, with the major ad-
vantage that a single ]unctlon made by attaching oversized
flanges to two lengths of precision waveguide, can be
appropriately displaced:to produce any value of |T',0 < |T|
< 1. The reflection coefficient for a given displacement is
calculated readily using the preceding analysis, and for
small displacements, the effect of flange loss is minimized,
as it is in quadrature with the calculated reflection. An
E-plane displaced junction has the particular advantages of
a simple equivalent circuit, namely, a shunt susceptance in
the plane of the junction, and the availability of a simple
approximate formula (44) which is sufficiently accurate, for
displacements of up to 25 percent, that it can be used in all
but the most exacting circumstances.

A disadvantage of this use of a displaced junction is that
|T'| is approximately twice as sensitive to mechanical mea-
surement error than when a reduced-height waveguide is
used. The displaced junction is also more frequency sensi-
tive than a reduced-height guide, but this is only a disad-
vantage if wide-band measurements are contemplated.

VIL

Matrix equations have been developed to describe the
effect of a displaced junction in rectangular waveguide,
and to determine the equivalent circuit parameters.
Weighted Gegenbauer polynomials were used to improve
the representation of the aperture fields near the edges and,
as a consequence, the matrix solutions converged rapidly.
Approximate formulas derived from the results apply for
displacements up to 25 percent of the waveguide dimen-
sions.

CONCLUSIONS
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The effects of E-plane or H-plane displacement are quite
different in character. Although the effect of H-plane dis-
placement can be represented by a shunt susceptance and
an increase in the electrical length of the waveguide, the
effect of E-plane displacement can be represented solely by
a shunt susceptance in the displacement plane. The ad-
vantages and disadvantages of using an E-plane displaced
junction as an adjustable reference have been discussed.

APPENDIX

Inversion of a Matrix with Complex Elements only in
the First Row. Consider a matrix 4 of order N +1 and its

inverse 4" where
D! F Ul w
= -._;____ 71: _~_|_._-
TlEve) f Tlvix

D and U contain single elements, F and W} are row vectors
of length N, E and ¥ are column vectors of length N, and
G and X are square matrices of order N. Since 44 ' =1, it
follows that

V=-GEU.

Hence, if E and G are real, all elements in the first column
of A~! have the same argument. In particular, if

4b=0

where Q is a column vector with all elements zero except
the first, the elements of the vector b will have the same
argument.
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Theoretical Analysis of Intermodulation
Distortion of Reflection-Type
IMPATT Amplifiers

MOUSTAFA EL-GABALY, SENIOR MEMBER, IEEE, AND M. EZZAT EL-SHANDWILY, MEMBER, IEEE

Abstract —The basic equations for a reflection-type IMPATT amplifier
are used to derive expressions for the output when the amplifier is driven
by a multifrequency input signal. The third-order intermodulation distor-
tion is expressed and graphically presented for various diode, circuit, and
signal parameters. The results provide a guideline for designing amplifiers
with minimum intermodulation distortion or prescribed distortion level.

I. INTRODUCTION

MPATT amplifiers are used in microwave communica-
L tion systems.and are expected to find wide applications
in millimeter-wave satellite communications. Due to the
inherent nonlinearity of the device, when more than one
signal is applied to the amplifier input, intermodulation
components will result. Some of these components are
usually within the bandwidth of the amplifier circuit and
appear in the output as intermodulation distortion.
Several investigators used the Volterra series technique
to analyze the small-signal nonlinearity of microwave de-
vices [1]-[16]. The main idea in all these analyses is to
represent the device by an equivalent circuit with nonlinear
‘elements. The nonlinearity of the elements (such as
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conductance, capacitance, and transconductance) is repre-
sented by a power series of the applied RF voltage.
Measurement of these parameters as functions of the RF
voltage for the particular device used is then carried out. In
IMPATT devices, the measured negative conductance and
device susceptance as functions of RF voltage amplitude
are usually used to determine the power-series coefficients
through curve-fitting techniques. Investigations of this type
suffer from two limitations. First, the process of measure-
ment and curve fitting has to be carried out for each device
to find the coefficients of the power series expansion for
the device elements. Second, the effect of the physical
parameters of the device (such as doping profile, dimen-
sions, ¢tc.) is not explicitly shown.

Recently, Best er ul. [17] used a different approach to
obtain the nonlinear response of a reflection IMPATT
amplifier to the amplitude of the combined input signals in
the time domain. They also used the measured nonlinear
diode conductance for numerical calculations.

This paper investigates the intermodulation distortion of
an IMPATT amplifier with a Read doping profile. The
basic equations for the operation of the IMPATT device
driven by a multifrequency RF voltage are used to obtain
the output. The analysis is general, and it suffices to know
the device parameters: phase delay wr, drift capacitance,
avalanche frequency w, (or, equivalently, the small-signal
admittance and w, ), and the external circuit parameters to
determine the intermodulation distortion. This avoids the
extensive latge-signal admittance measurements and the
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