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Abstract —The reflection from a displaced junction in rectangular wave-

gnide and the equivalent circuit parameters are calculated using modaf

analysis. The use of weighted Gegenhauer polynomials to describe the field

in the plane of displacement is shown to significantly improve the rate of

convergence of the solution in comparison to wavegnide-type mode func-

tions. Approximate formulas are given for displacements of up to 25

percent of the waveguide dimensions. An E-plane displaced junction is

suggested for use as an adjustable reference reflection.

I. INTRODUCTION

w

HEN TWO collinear waveguides of identical cross

section are joined, any misalignment will cause a

signal incident on the junction to be partially reflected. In

a waveguide system with many junctions, it is possible for

the reflections caused by several small misalignments to

interfere constructively, and significantly degrade the sys-

tem performance. The effect of small junction displace-

ments in either the E-plane or H-plane of rectangular

waveguide can be estimated by representing the junction as

an iris [1], but this approximation has long been known to

produce large relative errors [2].

The displaced junction is amenable to investigation using

the modal analysis technique, which has been successfully

applied to several other waveguide discontinuity y problems

[3]-[7]. In most previous applications, the field in the plane

of discontinuity has been represented by a series of trigo-

nometric functions appropriate to a waveguide with the

same cross section as the aperture. Although these func-

tions each satisfy the boundary conditions in waveguide,

several must be summed in order to approximate the field

behavior at the aperture edges [6], It has been suggested

that this approximation can be improved by taking into

consideration the normally neglected higher order func-

tions [8]. Recently, the use of weighted Chebyshev poly-

nomial aperture functions, which each behave correctly at

the edge of a half plane, has been shown to improve the

rate of convergence of the matrix solution for a step-

diaphragm junction in parallel-plate waveguide [9].

In this paper, the effect of transverse displacement of a

rectangular waveguide junction is calculated for TEIO-mode

propagation. The modal analysis technique is used, with

the correct behavior of the transverse electric field near the
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aperture edges ensured by using appropriately weighted

Gegenbauer polynomials as the aperture functions. The

rate of convergence of the matrix solutions is compared

with that achieved using trigonometric aperture functions.

Simple empirical formulas developed from the solutions

are more accurate than the usual iris approximations.

An E-plane displaced junction is shown to have a simple

equivalent circuit, making it suitable for use as an adjusta-

ble reference reflection.

II. GENERAL FORMULATION

Two rectangular waveguides with identical cross-sec-

tional areas Al and xlz are joined with axes parallel, but

with a transverse displacements normal to either the broad

wall (E-plane displacement) or the narrow wall (H-plane

displacement). A TEIO-mode field incident on the junction

from waveguide 1 has a frequency such that no other

propagating modes can be sustained in the guide.

The transverse electric and magnetic fields in the aper-

ture formed in the junction plane can be written as

(1)
n n

with the functions d{ and ~~ chosen orthogonal over the

aperture area A. to satisfy

(2)

The sums of the incident and reflected transverse fields

in the incident waveguide are, at the aperture plane

P

(3)

P

where aP is the complex coefficient of mode p. In wave-

guide 2, the transverse transmitted fields at the aperture

plane are

(4)

P P

The mode components .FP, ~P and Z;, ~~ are orthogonal

over Al and A ~, respectively.

Equating the transverse fields in the aperture plane

enables the vector ~ with elements b,, to be determined
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Fig. 1. Equlvatent circnit and flow-graph for a displaced waveguide

junction.

from the matrix equation [6]

where g, is a vector with the first element unity and all

other elements zero, and the elements of the matrices $ and

~ are

s =
n,p ~ Z; X ~p. &i”a/~ 2; X ~:” dA”.

A. A.

The+elements of&‘ and+?’ are given by (6) after replacing

ZP, hp, and Al by Z;, h~, and AZ, respectively. The first

coefficient in (3) is the reflection coefficient T of the

propagating mode in waveguide 1, and is the first element

of the vector ~j – g,.

The junction is symmetric and lossless, and its equiva-

lent circuit may be represented as a shunt susceptance B at

the center of a lossless transmission line of real characteris-

tic admittance YOand length 1, as shown in Fig. 1 with the

corresponding flow-graph. Then

~=pe-Je=
– j(B/YO)exp(– j6)

2+ jB/YO
(7)

where 0 = 2 T1/A ~, with A~ the guide wavelength, and

B 2/rl

~ = [~_ ,q2]v2

(), [n-cOs-’(lrl)] -0. (8)arg(I’)=-sgn $

The sign of B/ YO,denoted by sgn(B/ YO), is + 1 when B is

capacitive, and – 1 when B is inductive.

III. E-PLANE DISPLACEMENT

The displaced junction in Fig. 2 shows waveguide 2 in

the x, y‘, z cartesian coordinate system displaced by an

amount y =s with respect to waveguide 1 in the x, y, z

cartesian coordinate system. With a TEIO-mode signal inci-

dent from waveguide 1, the TEIP and TMIP modes set up

‘r
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Fig. 2. Geometry of an E-plane displaced junction.

by the discontinuity will combine to ensure ~X = O, and

form the LSEIP mode with components

where Zl, ~ = .ZO.yp is related to the propagation constant y;

of mode p, which is evanescent for p >1, by

‘P=+y,=[(:)+]’],p=,,z,s...

(lo)

Expressions for Z; and i. ~~ are given by (9) after replacing

y byy’.

The plane v = O ~isects the aperture, and it is convenient

to write .Z; and 2. h; in the form

.?;=~sin(~)~.[~), ?2= 0,1,2,...

2“’’=*[(2r-11sin(%‘“)
where d = b –s. The aperture functions j,($) and g,,($)

must be selected so that (2) is satisfied, but without loss of

generality can be written in the form

L(’f)=(-l)nfn(-$)+
‘n(’t)=(-l) ’*’n(-’$). (12)

It follows from (5) and (6) that ~ has elements

A 2,,+ ~,z~ + ~= O, enabling (5) to be separated into the two

independent matrix equations Aebe = Q’ and AObO= QO,

with Q“ the null vector and b;: ;2., @ = b2H+-1: O. The

aperttire fields are therefore even about v = O. The super-

scripts e and o are used throughout to denote variables

associated with even and odd aperture functions, respec-

tively.

The remaining matrix equation has elements

A:. = ~ ? ‘COS2(ICp)12n,P12V,,p
2np=oyP

n$m =0,1,2...

(13)
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where

KP = p~d/2b

and

Izn,p=jlfzn(t)cOs(Kp&) @
o

/
Q.= 1fzn(t)g2n(t) dt

o

‘P
=1, P=()

=’2, p>o. (14)

Orthogonality ensures that 12.,0 = Q: = O, n >0, from

which it can be shown that 1= O = O and, therefore, the

equivalent circuit of the E-plane displaced junction is a

shunt susceptance in the junction plane.

A;,. is the only element of ~e to contain a term in y. and

be complex, and the Appendix then shows that all b; have

the same argument. This enables the matrix equation to be

separated into real and imaginary parts, and the problem

reduces to solving

y~ . Re (15)

where the real symmetric matrix ~ and the real vector R’

have elements

m COS2(KP)H ~

W;m’ z, 2n, p 2m, p* n,m = 0,1,2,...
~=o P

R:= ‘0’0 n=()

[2/3.] 1/2 ‘

. 0, n>O.

The H2n,p are obtained by dividing the 12., ~ by a nonzero,

but otherwise arbitrary, function of n, wluch will be de-

noted by F(n).

The shunt susceptance and reflection coefficient are

B
= 2ae,

– jae

y
r=—————

1 + ja’
(17)

where the scalar a’ is calculated from

(a’) -l=[g’]T~=R~x:. (18)

A. Gegenbauer Polynomial Aperture Functions

To take into account the edge condition, the desired

behavior of the transverse aperture field components is [5]

j~ a jr- 1/3
9

~.~TKr2/3, asr~O (19)

where r in Fig. 2 is the distance from an edge, measured in

the aperture plane. Orthogonal aperture functions, which

each behave correctly near the edges, can be written in

terms of the Gegenbauer polynomials C.U(&) as

fn(t)=(H2)-’’3(t)t)

%(t) = (1+)2’3C; %). (20)

These give rise to integrals for the Hz., p which can be

evaluated as an infinite summation of hypergeometric

functions, but a simpler result is obtained if

functions are chosen to be the orthogonal set

fn(t)=(l- t’)-1/3cY’(0

%(c) =w’(f)

389

the aperture

(21)

which correctly describes the behavio~ of ~~ at the edges,

and approximates the behavior of %. H~ at the edges when

several functions are summed. The integrals for the H2., *

can be evaluated using [10]

=j”27Tr(n+2V)~n+v(K)

r(F?+l)r(V)(2K)’ ‘

Re(v) > –1/2

and Fe(n) chosen such that

2.+1,6(%)J
H 2n, p=

(Kp)V6 :

~ = (3#2271’

0’0 [r(l/3)]2

where J,(z) is the Bessel function

I’(z) is the Gamma function.

In order to invert We, the aperture functions considered

must be restricted to a finite number N, but in principle it

is not necessary to limit the number of waveguide modes

considered. However, for speed of computation, we use

(23) to consider P waveguide modes exactly, and the

asymptotic expression

(22)

p>o

(23)

of the first kind, and

Jv(z)~(:)1’2cos(z-; -;), Z+CO (24)

to obtain a residual R which approximates the contribution

to W:. from higher waveguide modes. Thus

‘-1 COS2(K )

W;, m= ~ fl,3J2n+l/6(Kp) J2m+l/6(KP)
P=l YP(KP)

+(–l)”’mR

R= ~ ~ @s(2Kp ‘fi/3)-l/2]2
2’ir ~=p YP ( Kp )4’3

(25)

B. Trigonometric Aperture Functions

Aperture functions which have the same form as wave-

guide modes are

f2n(t)= g2.(t)=cOs(nd) (26)

and by choosing Fe(n)= ( – 1)”

Kp sin ( Kp )

H=
2“’P (Kp)2-(n7r)2 ‘ ‘p#n=

(27)

and HO,O=1. As the denominator 8 in (27) tends to zero

H 2n, p ‘+
w’+) ‘+O ’28)
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IV. H-PLANE DISPLACEMENT

The displaced junction in Fig. 3 shows waveguide 2 in

the x’, y,z cartesian coordinate system displaced by an

amount X=S with respect to waveguide 1 in the x, y,z

cartesian coordinate system. With a TEIO-mode signal of

free-space svavelength A incident from waveguide 1, the

TEPO modes set up by the discontinuity will have compo-

nents

(29)

where ZI,O = i?l, and yP is related to the propagation con-

stant y; of mode p, which is evanescent for p >2, by

y~=a=[mw’ ‘=2394”””
.[(!?)u]”.

Y1=JP1=J ~ (30)

Expressions for d; and ~J are given by (29) after replacing

X by X’.

The plane q = O bisects the aperture, and we write

(31)

where the aperture functions are selected so that (2) and

(12] are satisfied.

The analysis for the H-plane displacement case is similar

to that for E-plane displacement, with elements A2. + 1,’ ~ + 1

= O, enabling (5) to be separated into two independent

matrix equations which can each be put into the form

discussed in the Appendix. The problem reduces to solving

yg’ = &e, ~~o = RO
.- (32)

where the real, symmetric matrices ~, ~ and the real

vectors Re, RO have elements

W;m= i Yp5in2(Kp)H2n,pH2 m,p> nm=o!l~z”””
P=2

m

wf,m= ~ YPCOS2(KP)H2. +1, P~2m+1, P>
~=’

n,m =0,1,2...

R; = ~~/2sin(Kl)H2.,1

R:=/? ~/2 COS(K1)H2n+1,1

with

Kp = p~d/2a

and

H2n,p=j1f2n($)cOs( Kpf)d$/~’(n)

H 2n+l, p ‘jf2~+l(~)sin(Kpt) dt/FO(n).
o

(33)

(34)
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Fig, 3 Geometry of an H-plane displaced jnnction.

Fe(n) and F’-’(n) are nonzero, but otherwise arbitrary,

functions of n.

The equivalent circuit elements and the reflection coeffi-

cient are

B _ 2(1+ (X%”)

~– ~e – &J

t9=w-2tan-l(aO)

17=(1 -ja’)-l+ (1-ja~)-~-l (35)

where the scalars a’ and a“ are calculated from

(LY’)-l=[ly]T&

(ci”)-l=[lj”] T&. (36)

A. Gegenbauer Po~nomial Aperture Functions

To take into account the edge condition, the desired

behavior of the transverse aperture fields is [5]

where r is shown in Fig. 3. Orthogonal aperture functions

which each behave correctly near the edges are given by

(20), with the expressions for fn($) and g.(f) interchanged.

Interchanging the expressions for fn(f) and g.(t) in (21)

enables (22) to be used with an alternate formulation to (5)

in terms of the unknown coefficients {c.}, and ensures

that fi~ behaves+correctly at the edges, and approximates

the behavior of ET at the edges when several functions are

summed. However, numerical comparisons showed more

rapid convergence using (5) and (22) with

Ltt)=(l-(2)2/3cY’(H

‘)l(t)= G’’’(t) (38)

which correctly describes the behavior of Er at the edges,

and approximates the behavior of fl~ when several func-

tions are summed. Obvious choices of F’e( n ) and F“( n )

result in

_ n+7/6(Kp)J
H

n,P —
(Kp)7/’ “

(39)

As before, we consider P waveguide modes exactly, and

use (24) to obtain residuals R * which approximate the
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contribution from higher waveguide modes. Thus

p @12(Kp)

W:, m= ~ &n+,,, (Kp)y2m+7/6(KP)

p=, (Kp)7/3

+(–l)n+ml?+

p ypCOS2(Kp)~
W:, m= ~ 2n+13,6(Kp)J2m+ 13,6(~p)

P-2 (Kp)7/3

+(–l)n+mR-

R+Z& ~
Y, [sin(’2~p+ 77/6)~1/2]2

(Kp)10/3 “

(40)
p=P+l

B. Trigonometric Aperture Functions

Aperture functions having the form of waveguide modes

are

fn(~) =gn(E)== sin[(n+l)(E+l)f] (41)

which lead to

COS ( Kp )

‘2n’’=[(2n+0;]2-(#

H
sin ( Kp)

2n+l, p =
[(n+l)7r]’-(Kp)2”

(42)

As the denominators 8 in (42) tend to zero

H
(-l)n

2n’p+ (2n+l)7r [ I,1+(2nyl)7r ‘ 8+0

H
[

(-1)” ~+ 8
2n+l, p +

2(n+l)77 1

a-o.
2(r?+l)7r ‘

(43)

V. RESULTS

If N aperture functions are considered in the preceding

matrix formulations, the orders of We and W* are 1{(N +

1)/2} and 1{ N/2}, respectively, where 1{ } signifies

“the integer part of.”

It has been found [6], [11] that, for the trigonometric

aperture function formulations (TF), convergent solutions

are most readily achieved if the number of aperture func-
tions has a value close to N = 1 { PAd /A1 }, and this

relationship is used in all our TF computations.

The value of N required for convergence is much less

using the Gegenbauer polynomial formulations (GF) than

TF with the same value of P. For example, an E-plane

displacement of s/b= 0.1 with b/X~ = 0.3 has an equiva-

lent circuit normalized shunt susceptance of B/ YO=

0.058041. With P =100, the TF (~ of order 45) gave the

answer correct to five decimal places, but the same conver-

gence was achieved with the GF when ~ was of order 3.

With P =100, values of jr! from the TF were convergent

to at least five decimal places for 0.05s Aa /A1 <0.99.

I I I I I
-20 -15 -lo -05 0

Ioglo ( ‘/b)

Fig. 4. Reflection coefficient magnitude for an E-plane displaced junc-
tion, with b/Ag =.1 (.025) .45.

Equal or better convergence was found using the GF with

N =12 for Aa/A1 >0.9, N = 8 for 0.5< Aa/A1 <0.9, and

N= 4 for Aa/A1 <0.5.

The effect of neglecting the residual term in the GF

matrix elements was examined, and, irrespective of the

number of aperture functions considered, the accuracy of

the results did not equal that of the TF using the same

value of P. This is attributed to terms in the matrix

elements decreasing as p3 for the TF, but only as p7/3 for

the GF, making the neglect of higher terms more signifi-

cant.

The GF requires the evaluation of a large number of

Bessel functions, and, although these can be computed

rapidly using backward recurrence, the computation of the

trigonometric functions required for the TF is somewhat

faster. However, once the Bessel functions (or trigonomet-

ric functions) have been evaluated for a given displace-

ment, the smaller matrix size needed with the GF renders

that method increasingly superior as the number of fre-

quencies of interest increases. Wh~p the displacement is

large (aperture small), the reduced matrix size required by

the TF reduces the GF superiority.

The computations were verified to within the experimen-

tal accuracy of a six-port reflectometer measurement [12].

Reflection coefficients were measured in WR284 wave-

guide, for both E-plane and H-plane displacements.

Figs. 4 and 5 show the variation of lrl and B/ YOwith

E-plane displacement for various values of b/A~. At a

fixed frequency, Ir I increases monotonically with displace-

ment, and for a given displacement it increases monotoni-
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log,o( ‘/b)

Fig 5. Eqmvafent circmtnorrnahze dshuntsusceptanc efo ran E-plane
displaced junction, with b/Ag =.1 (,025) .45.

TABLE I
POLYNOMIAL COEFFICIENTS FOR APPROXIMATION TO Irl IN (44)

E-Plane Displacement H-Plane Displacement

n v
‘n n

Un
‘n

o 1.833 0.293 1.750 0.635

1 0.276 2.133 -0.332 -1.562

2 0.73 0.78 -2.71 0.44

3 0 19.69 -3.57 -7.63

tally with frequency. For 0.1< b/A~ <0.45, 1171can be

approximated by

n=o n=o

(44)

with t = b/A~, a = 0.3, ~ = s/b, and the coefficients u,,, u,,

given in Table I. This gives Irl with an error of less than 1$

percent for 0.025< s/b< 0.25, and with an absolute error

of less than 0.0001 for s/b <0,025. B/Y. and arg( I’) are

calculable from (8), taking sgn(B/ Y. ) = 1 and 0 = O.

The effective extra electrical length O introduced by

H-plane displacement of the junction is shown in Fig. 6,

and never exceeds 7+ degrees. Fig. 7 shows the variation of

11’I with ~-plane displacement for various values of a/A.

At a fixed frequency, Irl increases monotonically with

displacement, but it decreases monotonically with frequen-

cy only for large displacements. The expression in (44) can

7

6

5

L

-m
g

.
3

2

1

I I I I I
-20 -15 -lo -05 0

Ioglo ( ‘/0 )

Fig, 6. Extra electrical-line length introduced by an H-plane displaced
Junction, with a/X =.6 (.05) .95,

‘r

-05

I

-10
t

-20

I

I
-25

t

I I J I I
-20 -1 5 -lo -05 0

Iog,o ( 70)

Fig, 7, ReflectIon coefficient magmtude for an H-plane displaced junc-
hon, with u/k =,6 ( 05) .95.



HUNTER: DISPLACED RECTANGULAR WAVEGUIDE JUNCTION

be used with the coefficients in Table I and & = a/A,

a = 0.7, ~ = sja, to approximate Ir] with an error of less

than 4 percent for 0.66 a/A <0.9, 0.05< s/a< 0.25. For

0.6< a/A< 0.95, s/a< 0.05, the approximation gives lrl

with an absolute error of less than 0.0015, arid for 0.9<

a/A <0.95 Jhe absolute error is less than 0.008 for s/a <

0.2, and less than 0.015 for s\a <0,25. B/YO and arg(17)

are calculable from (8) after taking sgn ( B\ YO) = – 1, and

using the curves in Fig. 6 to estimate 9.

VI. ADISPLACED JUNCTION AS PREFERENCE

REFLEcT1ON

Reduced-height waveguides are well established as a

means of providing reference reflections in, a rectangular

waveguide system. To a first order of accuracy, the reflec-

tion coefficient is simply related to the ratio of waveguide

heights, and, is frequency independent. For more accurate

work, the frequency dependence’ of the reflection can be

estimated using an approximate formula which takes into

account the capacitance associated with the waveguide step

[1]. The effect of the loss associated with the flange junc-

tion should also be considered, as it affeot$ the calculated

value of the reflection coefficient directly [13]. A set of

reduced-height waveguides providing a range of (fixed)

reference reflections can be costly to mam.ifacture.

The displaced waveguide junction is an alternative means

of providing a reference r$lection, with the major ad-

vantage that a single junction, made by attaching oversized

flanges to two lengths of precision waveguide, can be

appropriately displaced, to produce any value of lrl, O < lrl
<1. The reflection coefficient for a given displacement is

calculated readily using the preceding analysis, and for

small displacements, the effect of flange loss is minimized,

as it is in quadrature with the calculated reflection. An

E-plane displaced junction has the particular advantages of

a simple equivalent circuit, namely, a shunt susceptance in

the plane of the junction, and the availability of a simple

approximate formula (44) which is sufficiently accurate, for

displacements of up to 25 percent, that it can be used in all

but the most exacting circumstances.

A disadvantage of this use of a displaced junction is that

lrl is approximately twice as sensitive to mechanical mea-

surement error than when a reduced-height waveguide is

used. The displaced junction is also more frequency sensi-

tive than a reduced-height guide, but this is only a disad-

vantage if wide-band measurements are contemplated.

VII. CONCLUSIONS

Matrix equations have been developed to describe the

effect of a displaced junction in rectangular waveguide,

and to determine the equivalent circuit parameters.

Weighted Gegenbauer polynomials were used to improve
the representation of the aperture fields near the edges and,

as a consequence, the matrix solutions converged rapidly.

Approximate formulas derived from the results apply for

displacements up to 25 percent of the waveguide dimen-

sions.
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The effects of E-plane or H-plane displacement are quite

different in character. Although the effect of H-plane dis-

placement can be represented by a shunt susceptance and

an increase in the electrical length of the waveguide, the

effect of E-plane displacement can be,represented solely by

a shunt susceptance in the displacement plane. The ad-

vantages and disadvantages of using an E-plane displaced

junction as an adjustable reference have been discussed.

APPENDIX

Inversion of a Matrix with Complex Elements only in

the First Row. Consider a matrix ~ of order N + 1 and its

inverse ~ – 1 where

D and Q contain single elements, ~ and Ware row vectors

of length N, ~ and ~ are column vectors of length N, and

@ and ~ are square matrices of order N. Since&-1= ~, it

follows that

Hencej if E and Q are real, all elements in the first column

of ~ -1 have the same argument. In particular, if

where Q is a column vector with all elements zero except

the first, the elements of the vector ~ will have the same

argument.
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Theoretical Analysis of Intermodulation
Distortion of Reflection-Type

IMPATT Amplifiers

MOUSTAFA EL-GABALY, SENIOR MEMBER, IEEE, AND M. EZZAT EL-SHANDWILY, MEMBER, lEEE

Abstract—The basic equationsfor a reflection-type IMPA’fT amplifier

are used to derive expressions for the output when the amplifier is driven

by a multifrequency input sigryi. The third-order intermodulation distor-

tion is expressed and grap~cally presented for various diode, circuit, and

signal parameters. The results provide a guideline for designing amplifiers

with minimum interrnodulation distortion or prescribed distortion level.

I. INTRODUCTION

I

MPATT amplifiers are used in microwave communica-

tion systems and are expected to find wide applications

in millimeter-wave satellite communications. Due to the

inherent nonlinearity of the device, when more than one

signal is applied to the amplifier input, intermodulation

components will result. Some of these components are

usually within the bandwidth of the amplifier circuit and

appear in the output as intermodulation distortion.

Several investigators used the Volterra series technique

to analyze the small-signal nonlinearity of microwave de-

vices [1]–[16]. The main idea in all these atlalyses is to
represent the device by an equivalent circuit with nonlinear

elements. The nonlinearity of the elements (such as
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conductance, capacitance, and transconductance) is repre-

sented by a power series of the applied RF voltage.

Measurement of these parameters as functions of the RF

voltage for the particular device used is then carried out. In

IMPATT devices, the measured negative conductance and

device susceptance as functions of RF voltage amplitude

are usually used to determine the power-series coefficients

through curve-fitting techniques. Investigations of this type

suffer from two limitations. First, the process of measure-

ment and curve fitting has to be carried out for each device

to find the coefficients of the power series expansion for

the device elements. Second, the effect of the physical

parameters of the device (such as doping profile, dimen-

sions, etc.) is not explicitly shown.

Recently, Best et d [17] used a different approach to

obtain the nonlinear response of a reflection IMPATT

amplifier to the amplitude of the combined input signals in

the time domain. They also used the measured nonlinear
diode conductance for numerical calculations.

This paper investigates the intermodulation distortion of

an IMPATT amplifier with a Read doping profile. The

basic equations for the operation of the IMPATT device

driven by a multifrequency RF voltage are used to obtain

the output. The analysis is general, and it suffices to know

the device parameters: phase delay o ~, drift capacitance,

avalanche frequency O. (or, equivalently, the small-signal

admittance and u.), and the external circuit parameters to

determine the intermodulation distortion. This avoids the

extensive lafge-signal adr&ttance measurements and the
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